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1. Strict and strong.

1. Give an example of a function f : R → R which is convex but not strictly convex.

2. Give an example of a function f : R → R which is strictly convex but not strongly convex.

3. Give an example of a function f : R → R which is strictly convex yet not bounded below.

4. Give an example of a function f : R → R which is strictly convex and bounded below yet
does not have a minimum.

Answer.

1. Any convex function with an affine portion (some line segment) will be convex but not strictly
convex, e.g. f(x) = |x|.

2. An example can be f(x) = ex. In fact, by the theorem on the characterization of convexity
for twice differentiable functions (see lecture notes), we have:

f ′′(x) > 0 for all x ∈ R =⇒ f is strictly convex

f ′′(x) ≥ µ > 0 for all x ∈ R ⇐⇒ f is µ-strongly convex

In our case, f ′′(x) = ex > 0 but f ′′(x) → 0 as x → −∞.

3. Consider f(x) = x + ex. This is strictly convex since f ′′(x) = ex > 0 yet f(x) → −∞ as
x → −∞.

4. Once again, an example is f(x) = ex. It is strictly convex and lower bounded by zero, but
the lower bound is never reached: the function does not have a minimum, but an infimum
of 0.

■
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2. Quadratic functions. Let E = Rn with the usual inner product and let f(x) = 1
2
x⊤Ax +

b⊤x+ c.

1. Show that f is convex if and only if A ⪰ 0.

2. Show that f is strictly convex if and only if A ≻ 0.

3. Show that f is µ-strongly convex if and only if A ⪰ µI. What is the best choice of µ is terms
of A?

Answer. We rely on the theorem on the characterization of convexity for twice differentiable
functions (see lecture notes). The Hessian of f is given by ∇2f(x) = A for all x ∈ E . Therefore,
direct application of the theorem gives:

1. The function f convex if and only if ∇2f(x) = A ⪰ 0.

2. We know that if ∇2f(x) = A ≻ 0 then f is strictly convex. Here, the converse is also true.
To show this we use the theorem characterizing convexity for differentiable functions (see
lecture notes):

f strictly convex

⇐⇒ ∀x, y ∈ Rn, f(y) > f(x) + ⟨∇f(x), y − x⟩

⇐⇒ ∀x, y ∈ Rn,
1

2
y⊤Ay + b⊤y + c >

1

2
x⊤Ax+ b⊤x+ c+ (Ax+ b)⊤(y − x)

⇐⇒ ∀x, y ∈ Rn,
1

2
y⊤Ay +

1

2
x⊤Ax > x⊤Ay

⇐⇒ ∀x, y ∈ Rn,
1

2
(y − x)⊤A(y − x) > 0

⇐⇒ ∀v ∈ Rn, v⊤Av > 0

⇐⇒ A ≻ 0.

3. The definition of strong convexity gives that f is µ-strongly convex if and only if ∇2f(x) =
A ⪰ µI for some µ > 0. The best strong convexity constant is µ∗, which gives us the
tightest quadratic lower bound on the function. In other words it is the largest µ ∈ R such
that A − µI ⪰ 0. Denoting the eigenvalues of A as {λi}ni=1, the eigenvalues of A − µI are
{λi − µ}ni=1 and we want

λi − µ ≥ 0, ∀i = 1, . . . , n.

Therefore µ∗ = minλi, the smallest eigenvalue of A.

■

3. Jensen’s inequality. Let E be a linear space. Let f : E → R be a convex function. Show
that for all x1, . . . , xn ∈ E and any λ1, . . . , λn ≥ 0 such that λ1 + · · ·+ λn = 1 we have

f(λ1x1 + · · ·+ λnxn) ≤ λ1f(x1) + · · ·+ λnf(xn).
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Hint: proceed by induction on n.
We call the quantity λ1x1 + · · · + λnxn a convex combination of the points x1, . . . , xn. The

result that you proved shows that if X is a discrete random variable taking values x1, . . . , xn ∈ E
with probabilities p1, . . . , pn respectively, then we have

f(E[X]) ≤ E[f(X)],

where E denotes mathematical expectation. This inequality generalizes to any random variable
X.

Answer. The result holds for n = 1, 2. Suppose that it holds at order n ∈ N. Let λ1, . . . , λn+1 ≥ 0
such that λ1 + · · ·+ λn+1 = 1 and x1, . . . , xn+1 ∈ E . Let λ̄ = λ1 + · · ·+ λn. Then we have

f(λ1x1 + · · ·+ λn+1xn+1) = f
(
λ̄
(λ1

λ̄
x1 + · · ·+ λn

λ̄
xn

)
+ λn+1xn+1

)
≤ λ̄f

(λ1

λ̄
x1 + · · ·+ λn

λ̄
xn

)
+ λn+1f(xn+1)

≤ λ̄
(λ1

λ̄
f(x1) + · · ·+ λn

λ̄
f(xn)

)
+ λn+1f(xn+1)

= λ1f(x1) + · · ·+ λn+1f(xn+1),

where we used the convexity of f for the first inequality (as λ̄ + λn+1 = 1) and the induction
hypothesis for the second inequality. ■

4. Log-sum-exp. If you prefer you can consider the following exercise with k = 2.

1. Show that the log-sum-exp function is convex from Rk to R (t > 0 is a fixed, real parameter):

f(x) = t log

(
k∑

i=1

exi/t

)
. (1)

This function is often used in applications because it is a smooth approximation of the maximum
function. Indeed:

2. With x̄ = maxi xi show that

x̄ ≤ f(x) = x̄+ t log

(
k∑

i=1

e
xi−x̄

t

)
≤ x̄+ t log(k). (2)

Thus, the smaller t is, the better the approximation. However:

3. From an optimization perspective (for example, if we plan to use gradient descent), can you
see a reason why we should not take t too small?

Note: on a computer, it is necessary to use expression (2) rather than expression (1) to compute
f (and its derivatives). Indeed, expression (1) can lead to overflow when t is small because
it involves computing exponentials of possibly large numbers. In contrast, expression (2) only
involves exponentials of nonpositive numbers. Still, even with expression (2), evaluating f and its
derivatives can get tricky numerically when t is small.
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Answer.

1. There are several ways to do it. The function f is smooth and its gradient is given by
∇f(x) = u/s where we let s =

∑k
i=1 exp(xi/t) and

u =

exp(x1/t)
...

exp(xn/t)

 .

We deduce that

∂2

∂i∂j
f(x) =

1

ts2

{
exp(xi/t)

∑
k ̸=i exp(xk/t) if i = j,

− exp(xi/t) exp(xj/t) otherwise.

So the Hessian can be written as follows:

∇2f(x) =
1

ts2
(
s diag(u)− uu⊤),

where the diag operator transforms a vector into a diagonal matrix. The matrix s diag(u)−
uu⊤ is diagonally dominant so it is positive semidefinite. We conclude that ∇2f(x) is positive
semidefinite and that f is convex.

This way to proceed is error prone. Another possibility is to prove that for all x, y ∈ Rk and
θ ∈ [0, 1] we have

f((1− θ)x+ θy) ≤ (1− θ)f(x) + θf(y).

To do so we use Hölder’s inequality, which states that∣∣∣ n∑
i=1

xiyi

∣∣∣ ≤ (∑
i=1

|xi|p
)1/p(∑

i=1

|yi|q
)1/q

for all vectors x, y ∈ Rk whenever p and q are positive numbers such that 1/p + 1/q = 1.
This is a generalization of Cauchy–Schwarz’ inequality.

Alternatively, you may have seen in the lectures that when a function f is continuous, it is
sufficient to show that there exists a single θ ∈ (0, 1) such that for all x, y ∈ Rk

f((1− θ)x+ θy) ≤ (1− θ)f(x) + θf(y)

in order to conclude that f is convex. We will show this property with θ = 1/2. For all
x, y ∈ Rk we have

f(x/2 + y/2) = t log
( k∑

i=1

exp(xi/2t+ yi/2t)
)

= t log
( k∑

i=1

exp(xi/2t) exp(yi/2t)
)

≤ t log

(( k∑
i=1

exp(xi/t)
)1/2( k∑

i=1

exp(yi/t)
)1/2)

=
t

2
log
( k∑

i=1

exp(xi/t)
)
+

t

2
log
( k∑

i=1

exp(yi/t)
)

= f(x)/2 + f(y)/2,
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where the inequality comes from Cauchy–Schwarz.

2. Let x ∈ Rk and x̄ = maxi xi. Then

f(x) = t log

( k∑
i=1

exp((xi − x̄+ x̄)/t)

)

= t log

(
exp(x̄/t)

k∑
i=1

exp((xi − x̄)/t)

)

= x̄+ t log

( k∑
i=1

exp((xi − x̄)/t)

)
≤ x̄+ t log(k),

because each term in the sum is less than 1.

3. The Lipschitz constant of ∇f explodes when t goes to zero. Moreover we know from our
analysis of gradient descent that when the Lipschitz constant is large the progress can be
slower. You can visualize what is happening by plotting the function for k = 2. You will see
that as t goes to zero f becomes a better approximation of the max function, which is not
differentiable and certainly does not have Lipschitz continuous gradients.

■

5. Norms. Let E be a Euclidean space.

1. Show that any norm on E is convex.

2. Show that any squared norm on E is convex.

Interestingly, a norm is never differentiable at x = 0. Do you see why? However:

3. Let ⟨·, ·⟩ be an inner product on E and ∥ · ∥ the associated norm (that is, ∥x∥ =
√

⟨x, x⟩ for
all x ∈ E). Prove that the squared norm x 7→ ∥x∥2 is differentiable.

A norm may not be differentiable if it is not derived from an inner product. Can you come up
with an example?

Answer.

1. Let ∥ · ∥ be a norm on E . Remember that a norm is a map E → R such that

(a) ∥αx∥ = |α|∥x∥ for all α ∈ R, x ∈ E ,
(b) ∥x+ y∥ ≤ ∥x∥+ ∥y∥,
(c) ∥x∥ ≥ 0 for all x ∈ E and ∥x∥ = 0 ⇐⇒ x = 0.
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Let x, y ∈ E and t ∈ [0, 1]. Then

∥(1− t)x+ ty∥ ≤ ∥(1− t)x∥+ ∥ty∥
= |1− t|∥x∥+ |t|∥y∥
= (1− t)∥x∥+ t∥y∥

where we used the two first axioms of the norm and the fact that t, 1− t ≥ 0.

2. We let g be a norm on E and f(x) = x2. We know from the previous question that g is
convex and nonnegative. Also, f is convex and nondecreasing on [0,+∞[, which is the range
of g. So we conclude that f ◦ g is convex.
Alternatively we could also show the convexity using the definition.

3. Let f : x 7→ ⟨x, x⟩ be the squared norm. For all x, u ∈ E and t ∈ R we have

f(x+ tu) = f(x) + 2t ⟨x, u⟩+O(t2).

We deduce that

lim
t→0

1

t
(f(x+ tu)− f(x)) = 2 ⟨x, u⟩ .

The limit exists for all u so we conclude that f is differentiable.

■
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